

News Release
Joint Program Executive Office, Joint Tactical Radio System

Contact: Jeff Mercer
Desk: 619-524-4560 / Mobile: 619-252-2503

james.j.mercer@navy.mil
August 18, 2009

JPEO-NR-2009-05

JPEO JTRS initiates the development of a new Software Communications
Architecture (SCA) Release

Joint Program Executive Office for the Joint Tactical Radio System (JPEO JTRS)
has initiated the development of a new Software Communications Architecture
(SCA) release. The fundamental goal behind this revision is to position the SCA
as a specification that is comprehensive yet flexible enough to provide a
technical foundation for multiple generations of JTRS and industry products.

To accomplish this flexibility, the proposed SCA enhancements will evolve the
specification toward a technology independent representation, notably making
Common Object Request Broker Architecture (CORBA) optional. The original
version was suitable for larger, multi-channel radios and some of the proposed
changes will provide additional flexibility and capability for those platforms. The
more encompassing changes will modify the specification to better support the
requirements of low-power and single channel radios.

The change proposals and their descriptions for the new version are provided as
an attachment to this release. The Software Defined Radio Forum (SDRF) has
agreed to participate as the public liaison with JTRS for the development of the
new specification. JPEO JTRS has previously collaborated with the SDRF to
host a combination JTRS Science and Technology forum (JSTeF) and general
working meeting of the SDRF.

About JPEO JTRS

The Joint Tactical Radio System, headquartered in San Diego, Calif., was
initiated in early 1997 to improve and consolidate the Service’s pursuit of
separate solutions to replace existing legacy radios in the Department of Defense
inventory. The JTRS program has evolved from separate radio replacement
programs to an integrated effort to network multiple weapon system platforms
and forward combat units where it matters most – the last tactical mile. JTRS will
link the power of the Global Information Grid to the warfighter in applying fire
effects and achieving overall battlefield superiority.
JTRS is developing an open architecture of cutting edge radio waveform
technology that allows multiple radio types (e.g., handheld, aircraft, maritime) to
communicate with each other. The goal is to produce a family of interoperable,

modular software-defined radios which operate as nodes in a network to ensure
secure wireless communication and networking services for mobile and fixed
forces. These goals extend to U.S. allies, coalition partners and disaster
response personnel. For more information, please visit http://jpeojtrs.mil/

http://jpeojtrs.mil/

CP # TITLE NOTES

S026
Re-factor SCA so that it can be completely
tested in an automated fashion

S007 Language Feature Standards for C and C++

The current JTRS Standards are silent regarding language features. Without
restriction on language features many developers
are using features of C++ which are not appropriate for real-time embedded systems
which have memory and processing
power constraints

Develop a set of language feature guidelines for C and C++ that are based upon best
practices for developing real-time
embedded software systems that are size, weight, and power constrained. These
guidelines would also address application
portability as well as performance.

S018 Deletion of Non Waveform SCA Requirements

The non waveform requirements do not affect waveform portability however they have
significant impact on cost of terminal development, compliance testing, and terminal
boot-up latency. Use, as a basis for requirement removal, the study conducted by
General Dynamics under contract to the JTRS JPEO that was completed in April 2002
which looked at the definition of SCA compliance from a Waveform Interface
perspective using SCA Version 2.1. Also use the current requirement allocation of the
SCA . Objective would be to delete those requirements that do not affect waveform
portability and are internal to the JTR Set infrastructure.

S033

Reorganize SCA so that development
responsibilities are more self evident (CF
developer, WF developer, Device developer,
Service developer)

S047
Develop CORBA/e and CORBA Services
wording

S009 LW AEP CP LW AEP for Signal Processing (DSP)
S011 SCA Deployment CP Deployment Optimizations (e.g., port connections)

S019 Remove CORBA specific references from SCA
S027 Develop backward compatibility strategy
S032 Decompose CF.idl into a collection of files

CP # TITLE NOTES

S013 Architectural Consistency

SCA 2.2.2 has a number of features that could be viewed as special cases of more
general features:
1. Devices, Composite Devices, Resources, and Services are all special cases of
Component
2. Components are collected into assemblies or collections, such as application
resources collected into an Application,
devices into composite devices, all devices running on a processor device, device
managers in a domain.
3. DomainManager, DeviceManager, Application/AssemblyController can be thought
of as special cases of a manager of a
container of sub-objects.

While each special case has some unique aspects, there is much in common and
while some of that commonality is reflected
in the SCA specification as common or similar properties, method calls and interfaces,
and required behavior, maximizing
the symmetry seems not to have been a strong goal. Thus there are often places
where similar cases have unnecessary
differences or where hierarchies have limited number of levels when the general case
would have been no more difficult.

S029 Integrate SCA Extensions into SCA
S034 Remove unnecessary SCA requirements

S044
Allow for nested applications to be connection
endpoints

S005 POSIX file system accesses

Consider the following changes to this requirement - if the file is not available in the
local POSIX file
system then the application does the following to access the file:
 Applications shall perform file access through the CF File interfaces. The application
filename syntax is specified
in section 3.1.3.4.2.1.

S008 Deployment, Initialization and Configuration CP

clarification of service deployment for initialization and configuration when Lifecycle
and PropertySet are supported
along with connection behavior.

For LW components, this also means AF can manage all capacities offloading
responsibilities from Devices.

CP # TITLE NOTES

S024
Introduce component model into SCA

S038
Make Application Factory deployment and
configuration more deterministic

S043
Address Application factory component
initialization and configuration requirements

S046 Enhance external port connectivity

S002 Domain Profile files

Complete re-vamping of the domain profile. In its current form, it is too complicated
and requires extensive deployment experience. Perhaps this can be combined with the
initiative to make WFA deployment more deterministic since it was the ultra-flexible
WFA deployment scheme that drove some of the complexity into the domain profile in
the first place. There should be some consideration given to even moving away from
the use of XML for the domain profile and replacing it with something much simpler
(e.g. .ini files)

S006 Loadable Device Enhancement

LoadableDevice allows for extendable LoadType that is a numeric value instead of an
Enumeration, such that devices that have
extended the LoadableDevice interface can support device dependent load types.

S016
Maintain backward compatibility for waveforms
while sacrificing compatibility for CF

We have a goal of maintaining a high level of backward compatibility for the new
evolved SCA. But absolute backward
compatibility will be difficult. Our priority is:
1) backward compatibility for waveforms is highest priority
2) backward compatibility for platform components is lower priority but still high
3) backward compatibility for OE and especially CF is lowest

Some current requirements on CF that have no impact on waveforms or even platform
components might be eliminated,
allowing CFs to implement as desired. Some requirements simply specify how CF
components interact internally between
each other and have no visibility to platform or waveform components.

S035 Develop static SCA profile

S037
Expand AEP to include Networking operations,
including socket programming.

S001 SCA Security Supplement
SCA 2.2.2 deleted this document. Create a new, relevant, security document
applicable to the broader class of software defined radios.

S004 UUID Format Determine whether this requirement should be deleted or changed.

S010
Executable Device deployment enhancement
CP

Executable Device expanded behavior to handle processing envs or processing
collocation behavior.

S012 SCA LW Component CP Lightweight SCA components (e.g., waveform and devices)

CP # TITLE NOTES

S015 DMD and DCD connections

1. The DCD should have an option to specify a DMD.
2. The DMD should have an element (required) to specify the DomainName.

S025
Develop “compliance by inheritance” validation
policy

If a software component is produced by an approved SCA-compliant tool, the desire is
to not required testing again for such components. Likewise for approved core
frameworks, etc.

S042 Formalize Set set up and tear down semantics

S021
Make descriptor files platform neutral, provide
option for XSD inclusion

S023 Define SCA profiles

S028 Develop SCA non-GPP operating environment

S030 Integrate Naming Service and Domain Finder
S031 Integrate all changes into SCA specification

S036
Develop program language specific policies on
libraries, exceptions and runtime typing

S040 Develop equivalent SCA Extension for devices
S041 Remove file operations
S020 Develop Technology specific mappings
S039 Develop Appendix D requirements

S022
Introduce configurable capability within SCA
constructs

S048
Add a discussion on the soon-to-be-standard
C++ Boost library

S049
Standard way for exceptions to be defined and
handled

Embedded programmers disdain native language exception handling because of the
increase in memory and CPU resources.

S050 PIM definition Attempt to define the SCA as a PIM and provide appendices for approved PSMs.

S051 One ways Address how CORBA one-ways or C++ calls without returns should be supported.

S052

Remove Naming Service and add similar
behavior like Device Mgr's registerDevice to
AppFactory with registerComponent

CP # TITLE NOTES

S053
Remove Device Package Descriptor XML file
from Domain Profile

S054 Allow use of Offline XML parsing tool

S055
Clarity of service deployment that support
resource interfaces

S056
Introduce JTEL coordinated Argv language
within SCA

S057

Rework SCA Appendix B Signals Function
Behavior language to be consistent with SCA
Process Model

S058
Clarify what is meant by pending service
connections in the Domain Manager behavior

S059
Establish standards and guidelines for SCA
behavioral aspects.

Centered around establishing standards / best-practices guidelines for 'dynamics' --
e.g., threading policies, performance measurement requirements, etc

